EMS Code of Practice for Mathematical Publication

Code of Practice for Mathematical Publication

Approved by the EMS Executive Committee on 19 March 2025

All those involved in mathematical research and its dissemination should understand and uphold high standards of ethical behaviour.

The European Mathematical Society recommends that this Code be adhered to by all authors, editors, referees and publishers of mathematics and, more broadly, by all those who are concerned with the publication, dissemination, and assessment of mathematical research.

Responsibilities of authors

  1. Authors should carefully seek to determine whether their results are new, and include all appropriate attributions. Any errors or omissions of attributions should be corrected in a timely manner (normally by publication of a corrigendum or erratum).

  2. Authors should not publish mathematical results as their own when they have learned of the results from others, for example through published material, lectures, conversation, or earlier informal publication. This is plagiarism and constitutes serious misconduct. Translations of published or unpublished works should always be clearly presented as such, and the source of the work should be fully acknowledged.

  3. Authors should take responsibility for the integrity of any material they make public, seeking carefully to ensure that the mathematics presented is correct, and that they have appropriately acknowledged any contributions of others.

    Authors should acknowledge the use of AI or other automated tools if these have been employed in the creation of content. This can be achieved by explicitly including a declaration describing the automated tool(s) and the nature of their use. Authors must take full responsibility for the content and final form of their work.

  4. Each co-author should have contributed significantly to the research reported in any published work, and each person who contributed significantly to the relevant research should be named as a co-author. Further, all named authors should accept joint responsibility for any submitted manuscript and final publication. It is misconduct for one author to submit and to publish joint research without the consent of his or her co-authors.

  5. In mathematics, simultaneous submission of a manuscript describing the same research to more than one journal is considered bad practice. Similarly, the publication of the same research in more than one journal without appropriate acknowledgement and citation is considered bad practice. It is however standard practice to disseminate a preprint in a publicly accessible server such as ArXiv prior to, or in parallel with, submitting the manuscript to a journal.

  6. Mathematicians should make public claims of potential new theorems only when they believe they are able to provide full details in a timely manner, to avoid unnecessarily blocking an active line of research.

  7. Authors should not publish in journals that display predatory behaviour. These journals neglect scientific quality in the sole interest of taking inappropriate advantage of publication fees from the authors. Publishing in such journals is unethical, as it blurs the frontier between sound mathematical research and unchecked, unreliable manuscripts. Authors may find it helpful to consult the web page https://euromathsoc.org/predatory-publishing.

  8. Authors should not manipulate references within an article, nor manipulate the publication of articles, for the purpose of artificially influencing the bibliometric data, impact factors, and citation counts that are generated.

Responsibilities of editors

  1. Editors should adhere to high ethical standards in handling a submitted article. An editor should withdraw from any editorial duties that would involve a personal, commercial, or professional conflict of interest. An editor should also avoid any misuse of their privileged position or of information received as part of their editorial duties to influence the handling of their own papers, or those of colleagues, students, or personal acquaintances. No information received in confidence should ever be used in the editor’s own work.

  2. Editors should promptly acknowledge receipt of manuscripts. They should ensure that the progress of consideration of a submitted manuscript is monitored and seek to avoid excessive delay in either the refereeing of a paper or the decision process. As a guide, a period of more than one year without any communication beyond initial acknowledgement would constitute “excessive delay”.

  3. Editors should make objective judgements about the acceptance of submitted manuscripts after careful consideration. Normally decisions will be made on the basis of reports from appropriate referee(s), but it will sometimes be clear to editors that a submitted manuscript is not appropriate for the journal and can therefore be rejected without inviting referees.

  4. Editors should inform authors of decisions taken in a courteous and timely manner, always passing on constructive criticism and information provided by the referees. Editors may decide that it is appropriate that certain comments provided by the referees should be confidential to the Editorial Board and not passed on verbatim to the authors.

  5. If an author communicates to an editor the information that a mathematical statement or an attribution in his or her published article is incorrect, the journal should publish a correction or retraction, preferably written by the original author.

  6. If an editor learns from a third party that certain statements or attributions in an article are incorrect, they should consider this carefully and react in a proportionate manner. This may involve obtaining a correction or retraction from the authors.

  7. If an editor discovers that parts of a work they have published have been plagiarised from another source, then the editor should request that the author submit a retraction. If this is not forthcoming, the journal should publish a statement giving details of the plagiarism involved.

  8. Mathematicians should not act as editors or editorial advisors unless they are aware of, and satisfied with, the standards and editorial practices of the journal.

  9. Mathematicians should not serve as editors of journals that display predatory behaviour. Such service is unethical, as it damages the long-established good standards of academic publishing.

Responsibilities of referees

  1. Referees should adhere to high ethical standards in arriving at a responsible and objective recommendations concerning the publication of material that they assess. Referees should seek to validate the correctness, significance, novelty, and clarity of a manuscript under consideration, and then report their findings to the editor in a careful and constructive manner. Nevertheless, final responsibility for the published work lies with the authors.

  2. If a mathematician is asked to referee a paper where there is a clear conflict of interest (for example, if the author is a current student or a family member) then they should not proceed. If there is concern over a potential conflict of interest (for example, if the author is a former student or colleague) then the potential referee should discuss this with the editor, and continue to act only with the agreement of the editor.

  3. Referees should be constructive and courteous in their reports.

  4. Referees should treat each work purely on its intrinsic merits, without being influenced by any considerations extraneous to the manuscript and journal, such as the status or career progression of the submitting author.

  5. Referees should treat manuscripts under review with complete confidentiality. Referees should not upload manuscripts or reports to external services unless the manuscript is already in the public domain.

  6. If AI or other automated tools have been employed in the creation of content or drafting of referee reports, their use must be acknowledged to the editor. Referees must take full responsibility for the content and final form of their reports.

  7. Referees who suspect any unethical behaviour pertaining to a manuscript under review, such as plagiarism or unacknowledged use of AI, should quickly report these concerns to the editor.

  8. Referees should report on manuscripts in a timely manner, taking into account the length of the manuscript and the requests of the editors.

  9. Referees should not attempt to derive gain by using privileged information obtained from a manuscript under review.

  10. Mathematicians should not act as referees unless they are aware of, and satisfied with, the standards and editorial practices of the journal.

  11. Mathematicians should not serve as referees of journals that display predatory behaviour. Such service is unethical, as it damages the long-established good standards of academic publishing.

Responsibilities of publishers

  1. Journals publishing mathematics should establish their standards for ethical behaviour. These should be clearly presented and should specify the steps to be taken to investigate and respond to suspicions or accusations of misconduct. Journals should respond to an author’s complaints with respect and due process.

  2. Journals publishing mathematics should provide a clear and accessible policy concerning the processing of submissions. There should be guidelines for handling issues which may arise during the submission process.

  3. The submission date of, and the date of any significant changes to, a manuscript should be published, since this becomes important in cases of disputes concerning priority.

  4. Journals which have an “online first” policy should have clear guidelines for handling any issues detected in an article between its online publication and its appearance in print. If an error is encountered, it should be handled the same way as for a print article.

  5. Publishers should not list a person as an editor or editorial advisor without the explicit consent of the person concerned. Publishers should maintain the accuracy of all information that they present concerning the editorial board.

  6. It is misconduct for publishers to advertise their own journals by the quotation of insecure, partial or otherwise misleading bibliometric data.

Download PDF

Links

Procedures to raise and process complaints against the Code of Practice for Mathematical Publication or the EMS Policy on Conflicts of Interest